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Abstract. A three-dimensional full electromagnetic particle-in-cell (PIC)
code, TRISTAN (Tridimensional Stanford) code, has been parallelized
using High Performance Fortran (HPF) as a RPM (Real Parallel Ma-
chine). In the simulation, the simulation domains are decomposed in
one-dimension, and both the particle and �eld data located in each do-
main that we call the sub-domain are distributed on each processors.
Both the particle and �eld data on a sub-domain is needed by the neigh-
bor sub-domains and thus communications between the sub-domains are
inevitable. Our simulation results using HPF exhibits the promising ap-
plicability of the HPF communications to a large scale scienti�c comput-
ing such as 3D particle simulations.

1 Introduction

This paper reports on parallelization of Tridimensional Stanford (TRISTAN)
code [1] that is a three-dimensional electromagnetic full particle code developed
at Stanford University on a two-way PentiumPro PC cluster that consists of 10
distributed SMPs using High Performance Fortran.

In our parallel program, the simulation domain is decomposed into the sub-
domains as shown in Fig. 1. The Particle-In-Cell (PIC) computation in TRIS-
TAN to be performed on a certain sub-domain or on a certain processor where
the sub-domain is distributed will typically require the data from their neighbor
processors to proceed the whole PIC simulations. Here we distribute the �eld
arrays and the particles over processors as indicated in Fig. 1. Thus the data
must be transferred between processors in each time step so as to allow PIC sim-
ulation to proceed in time. These inter-processor communications in each time
step need to be programmed in HPF constructs.

The amount of inter-processor communications needed for a parallel program
basically depends on the algorithms and the scales of the physical problem sizes
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adopted in the simulations. In PIC simulations, they are the way decompose the
simulation domains, the sizes of the sub-domain boundaries, and the number of
the particles in a cell, respectively.

The pgHPF [2] compiler of Portland Group Inc. aims to realize the stan-
dard High Performance Fortran speci�cation and can be installed on a number
of parallel machines. Executables produced by the pgHPF compilers are uncon-
strained, and can be executed on any compatible IA-32 processor-based system
regardless of whether the pgHPF compilers are installed on that system or not.
From the HPF programmer's point of view, the di�erences between versions of
the pgHPF runtime library have little e�ect on program developments.

In parallel programming models, usually, the SPMD models using MPI (Mes-
sage Passing Interface) or PVM (Parallel Virtual Machine) are one of the most
poplar model. The biggest HPF advantage is its programming styles. Once the
simulation domains are decomposed and the data are distributed to each sub-
domains or over processors using simple HPF compiler directives, other HPF
programming styles are very similar to those in usual Fortrans. Of course, the
biggest problems here is the performance issues comparing with those using MPI
or PVM.

Actually, pgHPF is based on a RPM (PGI Proprietary Communications -
Real Parallel Machine) protocol. This transport mechanism was developed by
PGI to model the behavior of PVM among a homogeneous group of hosts on
a network. It o�ers both greater programming eÆciency and performance than
PVM with fewer requirements. In this paper, to archive a similar high par-
allel performance comparing with that of MPI or PVM using HPF in a full
electromagnetic PIC simulation, some careful optimizations of inter-processor
communications are proposed.

Our code is same as the TRISTAN code except the parallelization part, which
utilizes charge-conserving formulas and radiating boundary conditions [1]. It is
written in HPF so that that the code can be run on any parallel computers with
the HPF compilers.

The parallelization part of our HPF TRISTAN code is similar to Liewer et
al. [3] and Decyk [4]. We separate the communication parts from computation
parts, and use both the the particle manager and the �eld manager to localize
the inter-processor communications [4].

The basic controlling equations of the plasmas are:

mi

dvi
dt

= qi � (E + vi �B) (1)

@B

@t
= �5�E (2)

@E

@t
= c2 5�B �

1

"0
J (3)

J = n
X

(qivi) (4)



3D HPF EM PIC Code 3

The coordinate and one-dimensional domain decomposition using in the sim-
ulation domain is shown in Fig. 1. For parallel benchmarking purposes, we per-
form the real simulations of solar wind-magnetosphere interactions using the
code. For the simulation of solar wind-magnetosphere interactions, the following
boundary conditions were used for the particles [1]: (1) Fresh particles repre-
senting the incoming solar wind (unmagnetized in our test run) are continuously
injected across the yz plane at x = xmin with a thermal velocity plus a bulk
velocity in the +x direction; (2) thermal solar particle ux is also injected across
the sides of our rectangular computation domain; (3) escaping particles are ar-
rested in a bu�er zone, redistributed there more uniformly by making the zone
conducting in order to simulate their escape to in�nity, and �nally written o�.
We use a simple model for the ionosphere where both electrons and ions are
reected by the Earth dipole magnetic �eld. The e�ects of the Earth rotation
are not included. Since the solar-winds and the Earth dipole magnetic �eld are
included, the load-imbalance due to this asymmetry are expected in this HPF
TRISTAN code.

2 Arrays in Original TRISTAN code

The motivation of TRISTAN, a fully three-dimensional (3D) electromagnetic
(EM) particle-in-cell(PIC) code written by Oscar Buneman and other collabora-
tors in Stanford University, is to develop a general particle-in-cell code for space
plasma simulations [1]. Here we only discuss the data structure and the data
distribution over processors on the HPF TRISTAN code, and do not discuss the
details of the numerical algorithms and the plasma physics in TRISTAN in the
present report. For the physics of the PIC code, please refer to, for examples, [5]
and [6].

The data structure of TRISTAN code consists of two primitive data types.
The �rst one is the particle data as follows: x(mp); y(mp); z(mp); u(mp); v(mp); w(mp);
where mp= total number of particles, the positions and velocities of ions and
electrons are recorded at x(1 : mh); y(1 : mh); z(1 : mh); u(1 : mh); v(1 :
mh); w(1 : mh), and x(mh+1 : mp); y(mh+1 : mp); z(mh+1 : mp); u(mh+1 :
mp); v(mh + 1 : mp); w(mh + 1 : mp), respectively, where mh = mp=2. The
second one is the grided �eld data expressed as the triple-indexed arrays of EM
(ElectroMagnetic) �elds as follows:

ex(i; j; k); ey(i; j; k); ez(i; j; k);

and
bx(i; j; k); by(i; j; k); bz(i; j; k):

The original TRISTAN code uses "COMMON" block clause to save and transfer
�elds data between subroutines in theMOVER(push particles) andDEPOSIT
(deposit current data to the �eld grids) subroutine calls. Meanwhile in the sub-
routines that processes the surfaces and edges of the grid data, the �led data are
transferred by dummy arrays in the original code. In both of these subroutines,
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the �eld arrays are treated as single-indexed. On the other hand, triple-indexed
�eld arrays are employed in the �eld solver subroutines. In the code, single-
indexed arrays are converted automatically to the triple-indexed arrays when
they passed over two subroutines.

Converting a serial Fortran program to a HPF program, we have to stress two
points that are very important for rewriting TRISTAN in HPF: 1 the "COM-
MON" statement is restricted as suggested by pgHPF user guide and there they
indicated 'We strongly recommended that programmers writing new F90 code
use features like "MODULE" ... to avoid the use of "COMMON"...'[7][8], in case
of data overlapping, and substituted it by "MODULE" block; and 2 to control
the communications, all the arrays are treated as �xed indexes throughout the
whole program. We control the communication parts using both the �eld and
particle managers [4].

3 Field Data Domain Decompositions

The �eld data are decomposed over sub-domains of that number is equal to
the number of the processors as indicated in Fig. 1. In processing the current
deposition that is so-called the scatter part of the computations, to avoid large
transients or variations of currents TRISTAN uses a 'smoother' that has 27
di�erent weights, smoothing the current deposition. In DEPOSIT subroutine
the smoothing is performed as follows:

ey(i+smx+1,j+smy,k+smz+1, Np)=ey(i+smx+1,j+smy,k+smz+1, Np)+...;

where smx = �1 : 1; smy = �1 : 1; smz = �1 : 1. Therefore, the current
deposition of one particle will be related to three grids in each dimension, where
one of them are at the backward grid and two of them at the forward grids in
each dimension.

In the "MODULE" block, the �eld arrays are written in HPF directives as
follows:

REAL;DIMENSION(nx; j; k;Np) :: ex; ey; ez

REAL;DIMENSION(nx; j; k;Np) :: bx; by; bz

where Np=the number of processor, nx = i=Np + 3 (here assuming i=Np is
not necessarily equal to be integer exactly) keeping one guard cell in the left
(backward) and two in right (forward) side of the sub-domains in the domain-
decomposition direction (i. e., in the solar-magnetotail direction). Here the in-
dices i; j and k corresponds to the numbers of �eld grids in x; y and z directions,
respectively. Using the HPF directive "DISTRIBUTE", we, respectively, map
the sub-domains to each processor on a distributed memory parallel computer:

DISTRIBUTE(*,*,*,BLOCK) ONTO Np :: ex,ey,ez

DISTRIBUTE(*,*,*,BLOCK) ONTO Np :: bx,by,bz
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In order to separate the communication parts from the computation parts, each
sub-domain keeps extra cells, the so-called guard or ghost cells, that store the
�eld data information in the �rst and the last two grids of that sub-domain
in the decomposition direction. Figure 2 illustrates this concept of the data
mapping over the sub-domains or processors. Here the communications are re-
quired after updating the �eld data every time step. In the �eld manager [4],
the data send to the neighbor processors are packed in the working arrays:
Cex(1; j; k;Np), Cey(1; j; k;Np), and Cez(1; j; k;Np), before they are send to
the neighbor sub-domains. Thus the �eld data communications are performed
by the HPF CSHIFT construct after the data are packed in the working arrays.
The followings are the related parts of the HPF programs in the �eld manager[4]:

Cex(1,:,:,:)=ex(2,:,:,:)
Cex=CSHIFT(Cex,+1,4)
ex(nx-1,:,:,:)=Cex(1,:,:,:)
...

4 Particle Data Domain Decompositions

The particle data can be written in HPF directives as follows:

REAL;DIMENSION(m;Np) :: xe; ye; ze; xi; yi; zi

REAL;DIMENSION(m;Np) :: ue; ve; we; ui; vi; wi

where the subscripts i and e, respectively, stand for ion and electron, the number
m is the array size in each sub-domain. To ensure that the enough space are
reserved to store the particle data due to the load-imbalance, m must be 10-30
% larger than the average number of particles. The number Np is the number
of processors, and is the index used in the HPF "DISTRIBUTE" directive. As
the particles move in time in the simulations, the physical position of some
particles may cross the sub-domain boundaries, and move to the neighbor sub-
domains. When a particle moves from one sub-domain to another, the data of the
particle left the sub-domain must be sent to the appropriate neighbor processor
every time step. Before updating and sending the particle data, we have to sort
the particles that should be send to another sub-domain, and pack them in
the working arrays: CRi(:; Np), CLi(:; Np), CRe(:; Np), and CLe(:; Np). The
number of the ions and electrons sent in right and left are denoted by the arrays
ionspsR(Np), ionspsL(Np), lecspsR(Np), and lecspsL(Np), respectively. In our
HPF TRISTAN, we send both the packed arrays and their particles number
arrays to the neighbor sub-domains as follows:

CRi=CSHIFT(CRi, -1,2)
ionspsR=CSHIFT(ionspsR, -1)
...

Figure 3 shows the example of the particle data distributions and communica-
tions. After both the particle numbers and the packed working arrays are sent
and received by each appropriate processors, the received particles are sorted
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and put into the appropriate part of the particle arrays in that sub-domain.
The communications and sorting of these particles are performed in the particle
manager [4].

5 Dual PentiumPro PC cluster

Our dual PentiumPro PC cluster consists of 16 PCs and each PC have dual
200MHz PentinumPros with 128MB EDD DIMM memories. The PCs in the
PC cluster system are hooked through 100 Base-T ethernet with 100 Base-T
switching Hub. Redhat Linux version 4.1 is used as their operating systems. The
pgHPF compiler version 1.7 is installed for HPF computations.

6 Programming Comments on HPF Communications in

PC Cluster

One of the most diÆcult HPF programming in our HPF TRISTAN code is the
communication programming, especially, the determination of the bu�er sizes
which is used to pack the data to send to the neighbor processors. Of course,
we can de�ne a bu�er size large enough to send the particle or grid data to
neighbor processors at one time. However, as shown in Fig. 4, our experience
shows that when the bu�er sizes become larger than some critical values, in this
case 1456 bytes in our PC cluster system, the communication suddenly becomes
unstable, and the communication times suddenly jump up to 5 to 8 times larger
than those less than the critical value 1456 bytes. As indicated in the �gure,
the communication times when the bu�er size go beyond 1456 bytes are not
uniquely determined and rather undeterministic. In order to avoid the sudden
communication slow-down, we have to carefully to choose the bu�er size. We
have to split the particles or grids data into smaller pieces of bu�ers, pack the
smaller data, and send the data to the neighbor processors one by one. Thus
we can avoid the large slow-down of the simulations in this system due to the
unstable HPF communications. In our HPF TRISTAN code, the bu�er sizes can
be varied and can be set without modifying the program. We can �rst evaluate
the best bu�er size and run the simulations. The best bu�er size can be chosen
as indicated in Fig. 4. For examples, in the �gure, the best bu�er sizes can be
chosen between 640 to 1400 bytes.

The reason for performance degradation in communications with this longer
packets than 1465 bytes are not yet investigated in detail. One possibility of this
degradation is due to MTU of the ethernet. MTU is the Maximum Transmission
Unit that IP is allowed to use for a particular interface. In general, the bigger
the packet, the more data is transferred in the same number of packets, so the
routers work better and you experience higher throughput. If your MTU is set
too big however, your packets must be fragmented, or broken up, by a router
along the path to the server. This results in a drastic decrease in throughput
because the destination has to reassemble the packets that the routers took the
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trouble to fragment along the way and this thread of the code in both server
and router is usually sub-optimal. Of course, in our PC cluster the switching
hub works as the router here.

7 HPF TRISTAN Code Results

Table 1. Time step=100, Particle Number =1200,000, Grid Number =185� 65 � 65

Processors total time�Proc. No. (s) speed up Sp eÆciency "(%) "eff�grid(%)

1 4836 1.0 100. 100

2 7412 1.3 65.2 96.9

3 7249 2.0 66.7 95.4

4 7075 2.7 68.4 93.9

5 7287 3.3 66.3 92.5

6 7171 4.0 67.4 91.1

7 7236 4.7 66.8 89.8

8 7499 5.2 64.5 88.5

9 7937 5.5 60.9 87.2

10 7627 6.3 63.4 86.0

11 7843 6.8 61.7 84.9

12 7824 7.4 61.8 83.7

13 8019 7.8 60.3 82.6

14 8063 8.4 60.0 81.5

15 8588 8.4 58.3 80.4

16 8263 9.4 58.5 79.4

17 8453 9.7 57.2 78.4

18 8469 10.3 57.1 77.4

19 8617 10.7 56.1 76.4

20 8533 11.3 56.7 75.5

In Table 1, the parameter "eff�grid is de�ned as:

"eff�grid =
total grid no. in decomposition direction - total guard cell number

total grid no. in decomposition direction
:

Table 1 shows the total times multiplied by the number of processors, speedups
and parallel eÆciency vs the number of processors. The total computation time of
single processor are measured by the original version of TRISTAN code compiled
by pgf77 compiler with the optimization level -O2 option. Figure 5 shows the
speed up vs processor number. Note that in the table we show the total CPU
time multiplied by the processor number.

With �xing the problem size and increasing the processor number, the grid
number in one sub-domain in decomposition direction is reduced gradually. For
example, 60 extra ghost grid cells in total must be added to each sub-domains
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in decomposition direction or in x for 20 processors. It is about 25 percents of
the total grid number in decomposition direction in this case. Thus the com-
munication overhead become to be insigni�cant comparing with the total PIC
computation time as we increase the number of the processors. The increase of
the communication overhead reduces the parallel eÆciency in the table. If the
communication overhead is insigni�cant, it is very hard to improve the parallel
eÆciency of the code without varying the problem size. However, even the most
advanced parallel computer nowadays, it is not so easy to increase the problem
sizes as we increase the the number of the processors due to the large data sizes
we have to store in each simulation runs. Thus the optimal parallel eÆciency of
the scalable relation between the problem sizes and the number of processors are
diÆcult to measure in our simulation. However, Fig. 5 shows the high linearity
of our HPF TRISTAN code and the code scales well. In addition, with the HPF
compiler overhead and the load-imbalance overhead due to the Earth dipole �eld
located, the parallel eÆciency around 60-65 % is a�ordable in this type of large
scale simulations.

8 Concluding Remarks

In the present paper, we have successfully parallelized the three-dimensional full
electromagnetic and full particle code using HPF. The code is originally the same
as the TRISTAN code and the code is for the space plasma simulations. As shown
in Fig. 5 and Table 1, �xing the problem size, our HPF TRISTAN code has a high
linearity and scales well. However, our HPF code introduces about 70% overhead
and the reason for this overhead is not yet investigated. We have also parallelized
the three-dimensional skeleton-PIC code introduced by V. K. Decyk [4] in the
same parallel algorithm [3] [4] using HPF. The HPF three-dimensional skeleton-
PIC code introduces about 20% overheads[9]. One possibility to explain the
larger overheads in our HPF TRISTAN code over the HPF skeleton-PIC code is
that the more complicated data structures in HPF TRISTAN than those in the
skeleton-PIC code. Our PCs in the cluster have no enough memory and this may
degrade the performance of the PCs. Another possibility is the load-imbalance
originated in the TRISTAN code as we discussed previously. Our TRISTAN
code has the Earth dipole which simulates the Earth magnetospere only in one
sub-domain, and this may cause a large load-imbalance. We would like to leave
the detailed investigation to our future work.

The parallelization algorithm we used in our code is basically the same
as [3][4]. We separate the communication parts from the computation parts.
Thus the code can easily be converted to MPI or PVM code by replacing the
HPF \CSHIFT" constructs to appropriate message passing interfaces. Our expe-
riences show that the utilization of HPF \FORALL" or \DO INDEPENDENT"
constructs in the data-parallel manner without separating the communication
parts from the computation parts results in almost no gain of speedups or very
poor speedups.
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We have also compared the HPF skeleton-PIC code with the MPI or PVM
skeleton-PIC code. The HPF code degradation of the total CPU time over the
MPI or PVM code is only 10-15 % [9] in this case. Thus we expect that we should
be able to enjoy the easier HPF programming with a very small performance
degradation even in the more complicate codes like the TRISTAN codes.
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Fig. 1. Coordinate of the simulation domains and domain decomposition in x.
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Fig. 2. Diagram of �eld array decompositions and communications, with processor
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Fig. 4. Bu�er sizes and CSHIFT communication times in HPF.

Fig. 5. Speed up vs processor number.
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